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Abstract
Anticoherent spin states are quantum states that exhibit maximally nonclassical
behaviour in a certain sense. Any spin state whose Majorana representation
is a Platonic solid is called a perfect state. By direct calculation, it has been
shown that any perfect state is an anticoherent spin state. We show that any
spin state whose Majorana representation is both the orbit of a finite subgroup
of O(3) and a spherical t-design must be an anticoherent spin state of order t.
Since all Platonic solids are spherical designs, this result gives an explanation
of the anticoherence of perfect states and explains their observed order. We
also show that any spin state whose Majorana representation lies in any single
open hemisphere cannot be anticoherent of any order. This result is then
used to give further relations between spherical designs and anticoherent spin
states. We also pose some questions relating spherical designs and geometric
entanglement.

PACS numbers: 02.10.Ox, 03.65.Fd, 03.67.Mn
Mathematics Subject Classification: 81P99, 81Q99, 52B10, 05B30

1. Introduction

Coherent states have been of interest since their discovery in the 1920s, and provide a
crucial connection between classical and quantum behaviour [5]. One can see this connection
explicitly by studying the geometry of quantum state space [4]. For any quantum system, the
set of coherent states is viewed as an embedding of classical phase space into the space of
pure states for that system. The case of spin states is of particular interest and the Majorana
representation, introduced as a manifestation of spin alignment in atoms exposed to oscillating
magnetic fields, associates spin states with geometric configurations on the sphere [16]. Any
spin state whose Majorana representation is a Platonic solid is called a perfect state. On
the other hand, anticoherent spin states are quantum states first studied in [24] as a class of
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states that exhibit maximally nonclassical behaviour in a sense made precise here. By direct
calculation, it has been shown that any perfect state is an anticoherent spin state, but a number
of issues remain unsettled on this class of states.

In this paper, we study anticoherent states from two perspectives: via the Majorana
representation and a new set of tools in this setting, that of spherical designs. Specifically, we
show that any spin state whose Majorana representation is both the orbit of a finite subgroup
of the orthogonal group O(3) and a spherical t-design must be an anticoherent spin state
of order t. Since all Platonic solids are spherical designs, this result gives an explanation
of the anticoherence of perfect states and explains their observed order. We also show that
any spin state whose Majorana representation lies in any single open hemisphere cannot be
anticoherent of any order. This result is then used to give further relations between spherical
designs and anticoherent spin states. We also pose some questions relating spherical designs
and geometric entanglement.

The paper is arranged as follows. The next three sections include the basics on anticoherent
spin states, the Majorana representation and spherical designs. The subsequent two sections
present the derivation of our main results, and the final section includes an application to
entanglement theory.

2. Anticoherent spin states

An important example of coherent states are the coherent spin states. For any s, they form a
sphere of radius

√
s/2 inside CP2s (spin space). This 2-sphere serves as the classical phase

space for spin angular momentum [4].
As useful as this makes the coherent states, one could argue that today we are more

interested in states that do not mimic classical behaviour. With this in mind, anticoherent
spin states were introduced to serve as the ‘opposite’ of coherent spin states [24]. As such
they should be as ‘far away’ as possible from the classical phase space embedding, hopefully
making them useful for applications involving non-classical phenomena. They are defined as
the states |ψ〉 for which 〈n · S〉 = 〈ψ |n · S|ψ〉 is independent of n, where S = (Sx, Sy, Sz)

is the usual spin operator and n is a unit vector in R
3. In other words, the expected value

of a measurement of spin in an anticoherent state is the same for any direction we choose to
measure. The canonical example is |ψ〉 = |s = 1,mz = 0〉. This state satisfies 〈S〉 = 0,
which is equivalent to the definition. Indeed, matrix representations for the spin operators
[11, p 195] in the ordered basis {|1,−1〉, |1, 0〉, |1, 1〉} are given (up to normalization) by

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ Sx =

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ Sy =

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ ,

and it is easy to see that 〈ψ |Sj |ψ〉 = 0 for j = x, y, z.
Directional invariance of the measurement is useful; however, suppose one computed

other statistics of n · S in the state |1, 0〉, such as the variance. One may see a directional
dependence even though 〈1, 0|(n · S)|1, 0〉 is independent of n. This is due to the directional
dependance of 〈1, 0|(n · S)2|1, 0〉, the second of moment spin along n. We can remove this
directional signature by requiring that higher moments of n · S be direction independent.

Definition 1. We say that a state |ψ〉 is anticoherent to order t if 〈(n · S)k〉 is independent of
n for k = 1, . . . , t .

One can readily verify by direct calculation that the state |ψ〉 = |s = 1,mz = 0〉 is
anticoherent to order 1.
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3. The Majorana representation

The Majorana representation [16] works as follows. Every spin-s state

|ψ〉 =
s∑

m=−s

am|m〉

is mapped (bijectively) to a polynomial of degree 2s:

M|ψ〉(z) =
s∑

m=−s

(−1)m−sam

√(
2s

s + m

)
zs+m.

M|ψ〉(z) has 2s (not necessarily distinct) roots in the complex plane, generating an unordered
set of 2s points on the Riemann sphere via stereographic projection from the south pole:
v : C ∪ {∞} → R

3,

v(z) = 1

|z|2 + 1
(2�(z), 2	(z), |z|2 − 1), v(∞) = (0, 0,−1).

From this seemingly simple correspondence we obtain many useful geometric
characterizations. For instance, coherent states are represented as a single point on the sphere
with the multiplicity 2s. Eigenstates of n · S with the eigenvalue m are represented by s+m
points at n and s−m points at the antipode −n. Rotation operators are given by rotations of
the sphere and the operation of time reversal is given by an inversion of the sphere through the
origin. Remarkably, Zimba and Penrose used this representation to prove Bell’s non-locality
theorem without probabilities [25].

Among the numerous applications, this representation actually motivated the definition of
anticoherent spin states. Since coherent states are given by a single point on the sphere, it was
thought that anticoherent states would be uniform distributions—the Platonic solids being of
primary interest. It was shown that ‘Platonic’ spin states are indeed anticoherent [24], but the
question of why still remained open. Here we answer that question and propose many others
by relating anticoherent spin states to spherical designs.

4. Spherical designs

We begin this section by introducing some terminology. In what follows �n = {x ∈ R
n :

‖x‖ = 1} will denote the unit sphere in R
n endowed with the standard measure. A polynomial

p in n variables is said to be homogenous of degree d if p(kx) = kdp(x) for all k ∈ R and
x ∈ R

n. A polynomial p in n variables is said to be harmonic if it satisfies Laplace’s equation
on R

n (i.e. �p(x) = 0). If G is a finite subgroup of O(n), then the G-orbit of a point x ∈ R
n is

the set {gx : g ∈ G} and a G-invariant polynomial is a polynomial p in n variables for which
p(gx) = p(x) for all g ∈ G and all x ∈ R

n. We note that a simple chain rule argument (see
for example page three of [2] for details) shows that if T ∈ O(n) and f : R

n → R is infinitely
differentiable then �(f ◦ T ) = (�f ) ◦ T . It follows that if G is a finite subgroup of O(n) and
p is a G-invariant polynomial, then �p is also a G-invariant polynomial. Finally we recall that
the trace of a square matrix A denoted tr(A) is the sum of the entries on the main diagonal
of A.

Definition 2. A spherical t-design on �n is a finite set of points x1, x2, . . . , xm ∈ �n such
that 1

vol(�n)

∫
�n

p(x) dx = 1
m

∑m
i=1 p(xi) for all n-variable homogeneous polynomials p(x) of

degree less than or equal to t.

Spherical designs were first introduced in [8].
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Theorem 1 (Goethals–Seidel) [10]. Let G be a finite subgroup of O(n). Then every G-
orbit is a spherical t-design if and only if there are no G-invariant nonconstant n-variable
homogeneous harmonic polynomials with degree less than or equal to t.

This result motivates the following definition.

Definition 3. Let G be a finite subgroup of O(n). We say that G is t-homogeneous if every
G-orbit is a spherical t-design.

We will be particularly interested in spherical t-designs in R
3. The vertices of a regular

polytope form an important example of spherical t-designs. We note that the finite subgroups
of O(3) have been characterized (see [7] or [22]). It is known that the vertex sets of all
of the regular polyhedra are orbits of the finite subgroups of SO(3). The tetrahedron is
the orbit of a two-homogeneous group, the cube and the octahedron each are the orbit of a
three-homogeneous group and the dodecahedron and the icosahedron each are the orbit of a
five-homogeneous group [3]. The dihedral group of order 2n is another finite subgroup of
SO(3) which is one-homogeneous.

The following modified version of the Goethals–Seidel theorem will be useful to us.

Theorem 2. Let G be a finite subgroup of O(n). Then G is t-homogeneous if and only if the
only G-invariant n-variable homogeneous polynomials with degree less than or equal to t are
all of the form c

(
x2

1 + x2
2 + · · · + x2

n

)q
, where c ∈ R and q is an integer with 0 � 2q � t .

Proof. Since c
(
x2

1 +x2
2 +· · ·+x2

n

)q
is never a harmonic polynomial if c is nonzero, the if direction

of this result is an immediate consequence of the Goethals–Seidel theorem. Now suppose G
is t-homogeneous. Let p be a homogeneous G-invariant polynomial of degree 2j − 1 � t . We
will show that p is zero by induction on j . If j = 1, p is linear and hence harmonic. Therefore,
p must be zero by the Goethals–Seidel theorem. Now suppose p has degree 2j − 1 � t; then
�p is a homogeneous G-invariant polynomial of degree 2j − 3 and hence must be zero by the
induction hypothesis. Then p is harmonic and therefore must be zero by the Goethals–Seidel
theorem. Now let p be a homogeneous G-invariant polynomial of degree 2j � t , we will
show that p must be of the form c

(
x2

1 + x2
2 + · · · + x2

n

)j
, also using induction on j . Any

homogeneous n-variable polynomial p of degree 2 can be written as p(x) = xT Ax, where
A is an n × n real symmetric matrix, p will be harmonic if and only if the trace of A is
zero. Since p(x) = r(x) + tr(A)

n

(
x2

1 + x2
2 + · · · + x2

n

)
where r(x) = xT

(
A − tr(A)

n
I
)
x is a

harmonic homogeneous polynomial of degree 2. If p is G-invariant, then so is r which
means that r is zero which proves the base case of our induction. Now suppose p has degree
2j � t , then �p is a homogeneous G-invariant polynomial of degree 2j − 2 and hence must
be of the form c

(
x2

1 + x2
2 + · · · + x2

n

)j−1
. Then p is the sum of a polynomial of the form

c
(
x2

1 + x2
2 + · · · + x2

n

)j
and a G-invariant degree 2j harmonic polynomial; since the latter is

zero our result follows. �

5. Main theorem

As has been noted by many authors, applying a rotation operator to a spin state causes the
points in its Majorana representation to rotate rigidly. (See for instance [12, 24] or chapter 7
of [4].) We phrase this observation slightly differently as follows.

Lemma 1. Let R ∈ SO(3). Then there is a unitary linear operator L on the spin-s state
space with the property that if |φ〉 has a Majorana representation corresponding to the points

4
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{zm}2s
m=1 on the Riemann sphere, then |Lφ〉 is a state whose Majorana representation consists

of the points {Rzm}2s
m=1.

Lemma 2. Let A ∈ O(3). Let |φ〉 be the state whose Majorana representation consists of the
points {zm}2s

m=1 on the Riemann sphere and let |ψ〉 be the state whose Majorana representation
consists of the points {Azm}2s

m=1. Then 〈φ|(n · S)k|φ〉 = 〈ψ |(An · S)k|ψ〉 for all k.

Proof. First suppose A ∈ SO(3). We note that this result holds if |φ〉 is an eigenstate of n · S.
We can then extend to the general |φ〉 using linearity and the previous lemma. We can extend
this result to O(3) by proving that it holds when A is a single non-trivial reflection such as the
reflection through the x–z plane. It can be seen that this reflection is induced by the conjugate
linear operator which maps

∑s
m=−s am|m〉 → ∑s

m=−s am|m〉. This operator commutes with
Sx and Sz but anticommutes with Sy and our result follows. �

We can now state our main theorem.

Theorem 3. Let G be a t-homogeneous finite subgroup of O(3). Then any state whose
Majorana representation is a G-orbit is an anticoherent spin state of order at least t.

Proof. We note that for any fixed state, f (n) = 〈(n · S)k〉 is a degree k homogeneous
polynomial in nx, ny and nz. Furthermore it follows from the previous lemma that if the
state has a Majorana representation which is a G-orbit, then f is G-invariant. By theorem 2,

whenever k � t , 〈(n · S)k〉 must be zero if k is odd or is of the form c
(
n2

x + n2
y + n2

z

) k
2 for c ∈ R

if k is even. In either case 〈(n · S)k〉 is independent of the unit vector n. �

Remark 1. This result explains why any state whose Majorana representation is a Platonic
solid is an anticoherent spin state. As was noted in [24], a tetrahedral state is anticoherent of
order 2, and an octahedral state is anticoherent of order 3. The states corresponding to the
cube, dodecahedron and icosahedron can now be seen to be anticoherent of orders 3, 5 and 5,
respectively.

6. Equivalence in lower dimensions

There are other connections between spherical designs and anticoherent spin states. Zimba
[24] has shown that there are no anticoherent spin states of order 2 for spins 1

2 , 1 and 3
2 .

This was improved in [15] where it was shown that the only spins for which there are no
anticoherent spin states of order 2 are 1

2 , 1, 3
2 as well as 5

2 . It was proved by Mimura [20] that
in three dimensions there are n-point spherical 2-designs if and only if n is not equal to one of
1, 2, 3, 5.

We note that the points of a spherical 1-design cannot lie in a common open hemisphere.
In this section, we will prove the same for the Majorana representation of an anticoherent state
of order 1. This result will allow us to prove that a state with spin 1 or 3

2 is anticoherent of
order 1 if and only if its Majorana representation is a spherical 1-design.

We first need the following result which is known as the Cohn–Egerváry–Szegő theorem
(named after the three mathematicians who independently discovered this result in 1922).

Lemma 3. Let f = ∑n
j=0 aj z

j be an nth degree polynomial all of whose roots lie in the open
unit disc on the complex plane and g = ∑n

j=0 bj z
j be an nth degree polynomial all of whose

roots lie in the closed unit disc. Then the Schur–Szegő composition of f and g defined as
f � g = ∑n

j=0
aj bj

(n

j)
zj also has all of its roots in the open unit disc.

5
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The original references to this result are [6, 9, 23]. This result can also be found in the
standard references for the theory of polynomials. (It is listed as corollary 16.1a of [17] and
as theorem 3.4.1e of [21].)

Proposition 1. Any spin-s state whose Majorana representation consists of points lying
entirely in an open hemisphere of the Riemann sphere cannot be anticoherent of order 1.

Proof. Because of lemma 2, we may assume that the Majorana representation of |ψ〉 =∑s
m=−s am|m〉 has all of its points strictly below the x–y plane. This means that the polynomial

M|ψ〉(z) = ∑s
m=−s(−1)m−sam

√( 2s

s+m

)
zs+m has all of its roots in the open unit disc. Now the

polynomial q(z) = (z − 1)(z + 1)2s−1 = ∑s
m=−s

(2s

m

)
m
s
zs+m has all of its roots in the closed

unit disc. By lemma 3, p(z) = M |ψ〉(z) � q(z) � M|ψ〉(z) = ∑s
m=−s

m
s
|am|2zs+m has all of its

roots in the open unit disc. Therefore, 1
s
〈Sz〉 = p(1) must be nonzero and hence 〈(n · S)〉 is

not the zero polynomial. Hence |ψ〉 cannot be anticoherent of order 1. �

We note that if two points on a sphere are not antipodal then they must lie in a common
open hemisphere; hence, the ‘only if’ direction of the following result is a direct corollary.

Proposition 2. A spin-1 state is anticoherent to order 1 if and only if its Majorana
representation is a spherical 1-design; i.e. the Majorana roots are antipodal on the Riemann
sphere.

We note that the if direction follows from direct calculation. We may prove a similar
result for spin- 3

2 systems. In what follows we take h̄ = 1. Recall that v(z) is the stereographic
projection of z onto the Riemann sphere described in section 3.

Lemma 4. Let s = 3
2 and |ψ〉 = ∑ 3

2

m=− 3
2
am|m〉 be a state with a 3

2
�= 0. Then

〈n · S〉 =
∣∣a 3

2

∣∣2

2

3∏
i=1

(1 + |ri |2)
3∑

i=1

ci(n · v(ri)),

where

ci = 1 − 1

3

|ri⊕1 − ri⊕2|2
(1 + |ri⊕1|2)(1 + |ri⊕2|2) ,

ri are the roots of M|ψ〉(z) and ⊕ is addition mod 3.

Proof. The spin operator in question is up to normalization [11, p 195]

n · S = 1

2

⎡
⎢⎢⎢⎣

3nz

√
3(nx − iny) 0 0√

3(nx + iny) nz 2(nx − iny) 0
0 2(nx + iny) −nz

√
3(nx − iny)

0 0
√

3(nx + iny) −3nz

⎤
⎥⎥⎥⎦ .

Representing our state with Viète’s formulae for M|ψ〉(z) we can write 〈n · S〉 compactly as

〈n · S〉∣∣a 3
2

∣∣2 = fx(r1, r2, r3)nx + fy(r1, r2, r3)ny + fz(r1, r2, r3)nz,

6
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where fi = fi(r1, r2, r3) are the functions of the roots of M|ψ〉(z) for i = x, y, z. It follows
that

fx(r1, r2, r3) =
3∑

i=1

�(ri)

(
1 +

2

3
(|ri⊕1|2 + |ri⊕2|2 + �(ri⊕1ri⊕2)) + |ri⊕1|2|ri⊕2|2

)

=
3∑

i=1

�(ri)

(
(1 + |ri⊕1|2)(1 + |ri⊕2|2) − 1

3
|ri⊕1 − ri⊕2|2

)

= 1

2

3∏
i=1

(1 + |ri |2)
3∑

i=1

2�(ri)

1 + |ri |2
(

1 − 1

3

|ri⊕1 − ri⊕2|2
(1 + |ri⊕1|2)(1 + |ri⊕2|2)

)

= 1

2

3∏
i=1

(1 + |ri |2)
3∑

i=1

civx(ri).

Similar results hold for fy and fz, hence

〈n · S〉 =
∣∣a 3

2

∣∣2

2

3∏
i=1

(1 + |ri |2)
3∑

i=1

ci(n · v(ri)). �

We note that ci = 1− 1
12 [d(ri⊕1, ri⊕2)]2 where d is the chordal metric (d(ri⊕1, ri⊕2) is the

distance between v(ri⊕1) and v(ri⊕2) in R
3). Since the maximum value of the chordal metric

is 2, the c’s are always positive.

Proposition 3. A spin- 3
2 state is anticoherent to order 1 if and only if its Majorana

representation is a spherical 1-design; i.e. the Majorana roots are equally spaced on a
great circle of �3.

Proof. The if direction may be verified by direct calculation so we prove the only if direction.
〈n · S〉 is independent of n if and only if c1v(r1) + c2v(r2) + c3v(r3) = 0. For this to occur,
v(r1), v(r2) and v(r3) must be linearly dependent which means that they lie on the same
plane through the origin and hence on the same great circle. (We note that this statement
also follows from the fact that any three points on a sphere which do not lie on a single
great circle must lie in a common open hemisphere.) Since the ci’s depend only on the
chordal metric and are rotationally invariant, we may assume that v(r1), v(r2) and v(r3) lie
on the equator. So let v(rk) = (cos(θk), sin(θk), 0) for k = 1, 2, 3. For ease of notation,
we will let αk = |θk⊕1 − θk⊕2|. Then using the law of cosines, ck = 4

6 + 1
6 cos2(αk) =

5
6 − 1

6 sin2(αk). Because c1v(r1) + c2v(r2) + c3v(r3) = 0, there is a triangle with side lengths
{ck}3

k=1; the sine of the angle opposite the side of length ck is sin(αk). The law of sines
states that sin(α1)

c1
= sin(α2)

c2
= sin(α3)

c3
. Now using our expression for ck, we get sin(αk)

ck
=

6 sin(αk)

5−sin2(αk)
= f (sin(αk)), where f (x) = 6x

5−x2 . Since f (x) is strictly increasing on [0, 1],
f (sin(α1)) = f (sin(α2)) = f (sin(α3)) implies that sin(α1) = sin(α2) = sin(α3). Hence
either the sines are all zero or all alphas are 2π

3 ; the former would violate the equation
c1v(r1) + c2v(r2) + c3v(r3) = 0 and the latter corresponds to equally spaced points around
the great circle. �

In light of the results in both this section and the previous one, several questions arise
about the relation between spherical designs and anticoherent spin states. The most general
conjecture is the following.

7
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Conjecture 1. Any spin state is anticoherent of order t if and only if its Majorana representation
is a spherical t-design.

7. Application: symmetric state entanglement

It is well known that a symmetric pure state of n-qubits can be written as

|ψsym〉 = C
∑
σ∈Sn

|rσ(1)〉|rσ(2)〉 · · · |rσ(n)〉,

where |ri〉 are the qubits, C is a normalization constant and Sn is the symmetric group
of n elements [16, 18]. Amalgamating the representations of each qubit onto the same
sphere, we obtain a Majorana representation {v(ri)}ni=1 of |ψsym〉. For example, the state
|GHZ〉 = 1√

2
(|000〉 + |111〉) has the decomposition

|r1〉 = 1√
2
(|0〉 + |1〉), |r2〉 = 1√

2
(|0〉 + ei2π/3|1〉), |r3〉 = 1√

2
(|0〉 + ei4π/3|1〉)

giving an equilateral triangle on the equator of the Riemann sphere.
Recently, the preferred measure of entanglement for symmetric pure states has been the

geometric measure [13, 14], defined as

EG(|ψ〉) = 1 − max
|φ〉∈Prod

|〈ψ |φ〉|2.
The advantage of this measure is that the product state maximizing the overlap with |ψ〉 can
be found in the symmetric subspace when |ψ〉 is itself symmetric, drastically simplifying the
computation of EG [14]. This allows us to phrase the geometric measure of entanglement in
terms of the Majorana representation.

Proposition 4. Let |ψ〉 ∈ Sym((C2)⊗n) be a pure state with Majorana representation
{v(ri)}ni=1. Then

EG(|ψ〉) = 1 − C2(n!)2

4n
max
n∈�3

(
n∏

i=1

‖v(ri) − n‖2

)
.

Proof. Let |φ〉 = 1√
1+|rφ |2 (|0〉 + rφ|1〉) ∈ C

2 with rφ �= 0. Note that rφ is the Majorana root

of |φ〉 when viewed as a spin-1/2 state. Writing each |ri〉 in the expansion of |ψ〉 in a similar
fashion as 1√

1+|ri |2
(|0〉 + ri |1〉), one can easily verify that

|〈ri |φ〉|2 = |ri − r∗
φ |2

(1 + |ri |2)(1 + |r∗
φ |2) = 1

4
d(ri, r

∗
φ)2,

where d is the chordal metric and r∗
φ = −1/r̄φ is the antipode of rφ , i.e. the root corresponding

to the opposite point on the sphere. Thus, for any symmetric product state |�〉 = |φ〉⊗· · ·⊗|φ〉,
we have |〈ψ |�〉|2 = C2(n!)2

4n

∏n
i=1 ‖v(ri) − v(r∗

φ)‖2 from which it follows that

EG(|ψ〉) = 1 − C2(n!)2

4n
max
n∈�3

(
n∏

i=1

‖v(ri) − n‖2

)
.

If rφ = 0 or ∞, the result follows by rotational invariance. �

The Majorana representation of symmetric product states consists of a single point with
the multiplicity n (equivalent to that of coherent spin states) and so C = 1

n! and v(ri) = v for
all i, hence EG achieves its minimum value of zero. If anticoherent states are the ‘opposite’

8



J. Phys. A: Math. Theor. 43 (2010) 255307 J Crann et al

of coherent states, it would be interesting to investigate the geometric entanglement of their
symmetric counterparts. In particular, what can be said about the entanglement of a state
represented by a spherical t-design?

Recently, it has been shown that symmetric states with the highest geometric entanglement
for four and six qubits are represented respectively by the tetrahedron, a spherical 2-design,
and the octahedron, a spherical 3-design [1, 19]. Throughout the analysis many other states
represented by spherical designs such as the equilateral triangle and the triangular bipyramid
were also shown to be considerably entangled. This evidence suggests that symmetric
states whose Majorana representations are spherical t-designs would be strong candidates
for applications involving large degrees of geometric entanglement.
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